Chapter 1: Neurons & Action Potentials

Explore the fundamental building blocks of the nervous system

What if you could see neurons in action?

The human nervous system is an incredible network that coordinates all our actions and sensory experiences. But how does it actually work? This interactive simulation lets you explore neurons, action potentials, and the divisions of the nervous system.

In this exploration, you'll discover:

Start by selecting a tab below to begin your exploration!

Neuron Structure: The Building Block of the Nervous System

Tap neuron parts to learn more

Key Neuron Structures

Neurons are specialized cells that transmit information throughout the body. Click on any part in the diagram or cards below to explore in detail!

🌿

Dendrites

Signal Reception

🔬

Soma (Cell Body)

Metabolic Center

📡

Axon

Signal Transmission

🧈

Myelin Sheath

Insulation Layer

💊

Axon Terminals

Neurotransmitter Release

Action Potential: How Neurons Communicate

Membrane Potential Simulation

The action potential is a rapid electrical signal that travels along a neuron's membrane. Adjust the stimulus strength to see how it affects the neuron's response:

0% (No stimulus) 50% (Threshold) 100% (Maximum)
Stimulus strength controls the amount of depolarizing current. Below 50% threshold, only local depolarization occurs. Above 50%, a full action potential is triggered.
Click this button to apply the current stimulus strength to the neuron membrane. If above threshold, this will trigger a complete action potential sequence.

The Action Potential Process

1. Resting Potential (-70mV)

Membrane at equilibrium with selective permeability:

  • K⁺ leak channels (PK:PNa = 25:1 ratio)
  • Na⁺/K⁺-ATPase pump (3 Na⁺ out, 2 K⁺ in)
  • Impermeable intracellular anions (A⁻)
  • Goldman-Hodgkin-Katz equation determines Em

2. Depolarization (Threshold: -55mV)

Voltage-gated Nav1.1-1.9 channels activate:

  • Positive feedback loop: Na⁺ influx → further depolarization
  • Peak at +30 to +40mV (ENa = +60mV)
  • Duration: 0.5-2ms (temperature dependent)
  • All-or-none (regenerative) response

3. Repolarization

Na⁺ inactivation and K⁺ channel opening:

  • Fast Na⁺ inactivation (h-gates close, τ = 0.1-0.2ms)
  • Delayed rectifier Kv channels (Kv1.1-1.8) activate
  • K⁺ efflux restores electronegativity
  • Membrane approaches EK (-90 to -100mV)

4. Afterhyperpolarization (AHP)

Prolonged K⁺ conductance creates undershoot:

  • Delayed rectifier K⁺ channels remain open
  • Ca²⁺-activated K⁺ channels (SK, BK) contribute
  • Membrane reaches -75 to -90mV
  • Duration: 2-5ms (varies by neuron type)

5. Recovery & Refractory Periods

Channel kinetics determine excitability:

  • Absolute refractory: Na⁺ channels inactivated (1-2ms)
  • Relative refractory: Higher threshold due to K⁺ conductance
  • Na⁺/K⁺-ATPase restores gradients (metabolically expensive)
  • Recovery from inactivation: τ = 1-10ms

Clinical Insights

Action potentials follow the "all-or-none" principle - once threshold (-55mV) is reached, the regenerative process is inevitable and stereotyped.

Medical relevance: Local anesthetics (lidocaine, procaine) block voltage-gated Na⁺ channels, preventing action potential propagation and eliminating pain sensation.

Neuron Types: Specialized for Different Functions

Functional Classification

Neurons are classified based on their function in the nervous system:

Sensory (Afferent) Neurons

Convert external stimuli into electrical signals for the brain. Found in sensory organs and the PNS.

Motor (Efferent) Neurons

Transmit signals from the CNS to muscles and glands to initiate actions and movements.

Interneurons

Connect other neurons within the CNS. They process and integrate information between sensory and motor neurons.

Structural Classification

Neurons can also be classified based on their structure:

Multipolar Neuron (Most common type, e.g., motor neurons)

Multipolar Neurons

Have one axon and multiple dendrites. Most common type in the CNS. Examples include motor neurons and interneurons.

Bipolar Neurons

Have one axon and one dendrite extending from opposite sides of the soma. Found in sensory pathways like the retina, inner ear, and olfactory system.

Unipolar Neurons

Have a single process that divides into two branches - one functions as a dendrite, the other as an axon. Common in sensory neurons of the PNS.

Function vs. Structure

While there's some correlation between a neuron's structure and function, they're not always directly related:

  • Sensory neurons are typically unipolar or bipolar
  • Motor neurons are generally multipolar
  • Interneurons are almost always multipolar

Nervous System Organization

Central vs Peripheral Nervous System

Brain Spinal Cord Central Nervous System (CNS) • Brain • Spinal Cord Peripheral Nervous System (PNS) • All nerves outside CNS • Cranial & Spinal nerves

Central Nervous System (CNS)

Brain: Control center for all body functions, containing ~86 billion neurons

Spinal Cord: Information highway between brain and body, 31 segments

  • Protected by bone (skull & vertebrae)
  • Surrounded by cerebrospinal fluid
  • Blood-brain barrier protection

Peripheral Nervous System (PNS)

All neural tissue outside the CNS

  • 12 pairs of cranial nerves (from brain)
  • 31 pairs of spinal nerves (from spinal cord)
  • Ganglia: Clusters of neuron cell bodies
  • Sensory receptors throughout the body

Functional Divisions

Somatic Nervous System:

  • Voluntary motor control
  • Sensory information processing

Autonomic Nervous System:

  • Sympathetic (fight-or-flight)
  • Parasympathetic (rest-and-digest)
  • Enteric (gut nervous system)

Cranial Nerves: Direct Brain Connections

🧠 Your Brain's Direct Hotlines

Think of cranial nerves as dedicated phone lines between your brain and specific body parts. Unlike spinal nerves that take a detour through the spinal cord, these 12 pairs connect directly to your brainstem - like having a direct line to the CEO!

👁️ Special Senses (I, II, VIII)

Smell, vision, hearing, balance - your connection to the world

👀 Eye Movement (III, IV, VI)

Precise eye control for tracking, reading, depth perception

🗣️ Face & Voice (V, VII, IX, X, XI, XII)

Expression, speech, chewing, swallowing, autonomics

Each nerve has a unique personality and job description. Some are pure sensory (like your smell detector), others are pure motor (like your tongue controller), and some are mixed (doing multiple jobs). Click on any cranial nerve below to explore detailed anatomy and clinical correlations!

👃

I. Olfactory

Smell Sensation

👁️

II. Optic

Vision

👀

III. Oculomotor

Eye Movement & Pupil

🔄

IV. Trochlear

Eye Rotation (Intorsion)

😬

V. Trigeminal

Facial Sensation & Chewing

↔️

VI. Abducens

Lateral Eye Movement

😊

VII. Facial

Facial Expression & Taste

👂

VIII. Vestibulocochlear

Hearing & Balance

👅

IX. Glossopharyngeal

Taste & Swallowing

🫀

X. Vagus

Parasympathetic Control

💪

XI. Accessory (Spinal)

Neck & Shoulder Muscles

👅

XII. Hypoglossal

Tongue Movement

Clinical Memory Aids

Names: "On Old Olympus' Towering Top, A Finn And German Viewed Some Hops"

Olfactory, Optic, Oculomotor, Trochlear, Trigeminal, Abducens, Facial, Vestibulocochlear, Glossopharyngeal, Vagus, Accessory, Hypoglossal

Types: "Some Say Marry Money, But My Brother Says Big Brains Matter More"

S = Sensory, M = Motor, B = Both (Mixed)